0=-16t^2+14t+17

Simple and best practice solution for 0=-16t^2+14t+17 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+14t+17 equation:



0=-16t^2+14t+17
We move all terms to the left:
0-(-16t^2+14t+17)=0
We add all the numbers together, and all the variables
-(-16t^2+14t+17)=0
We get rid of parentheses
16t^2-14t-17=0
a = 16; b = -14; c = -17;
Δ = b2-4ac
Δ = -142-4·16·(-17)
Δ = 1284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1284}=\sqrt{4*321}=\sqrt{4}*\sqrt{321}=2\sqrt{321}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{321}}{2*16}=\frac{14-2\sqrt{321}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{321}}{2*16}=\frac{14+2\sqrt{321}}{32} $

See similar equations:

| 8(-3+6x)=-168 | | 8/10=4/2x+3 | | 5x-15=3-4x | | 17-18=6+p | | 4a-5+3a=-4(a+5)+3(6a-2) | | k2+8k+1=-6 | | 8(4x+5)=-88 | | 6z=39 | | k2+8k+1=- | | a=-4(a+5)+3(6a-2) | | a2-4a-37=-5 | | 10=9x-30+33 | | r2+4r-29=-8 | | 3b+8=b-5 | | x2+2x-57=6 | | y(3/10)=3(1/3) | | 8(1x+5)=96 | | k2-14k+45=-3 | | 3b+8=-b-5 | | b2+8b-39=-6 | | 2a+4=3a+9 | | p2+2p-18=-10 | | r/8=17 | | 0.10n+2=0.20n | | m2-10m+10=-6 | | 3x-37=12 | | 10x-12/5x-6=1 | | m2-18m+17=0 | | 3v-8=2v+3 | | n2+18n+17=0 | | 1-8a=-5 | | 2y3+15−3y5+13=1 |

Equations solver categories